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Background
Breast cancer is now the most common cancer in women worldwide. Cases with 12.2% 
of all newly diagnosed breast cancers and 9.6% of all deaths from breast cancer are con-
tributed by China [1]. Early detection of breast cancer can increase survival rate [2]. Cur-
rently, mammography is the most reliable method for detection of the abnormality in the 
breast [3–5]. But it is still a challenging work for the radiologists to distinguish between 
the malign and benign mass. Abnormal cases have various contour shapes, textures, 
and sizes. It is very difficult even for experienced radiologists to discriminate whether 
the breast mass is malign. Now the diagnoses depend on biopsy puncture which brings 
hurts to mind and body of the patients. A computer-assisted-diagnose system, which 
merges image processing and pattern recognition theory, can provide the diagnosis 

Abstract 

Background: Mammography is one of the most popular tools for early detection of 
breast cancer. Contour of breast mass in mammography is very important informa-
tion to distinguish benign and malignant mass. Contour of benign mass is smooth 
and round or oval, while malignant mass has irregular shape and spiculated contour. 
Several studies have shown that 1D signature translated from 2D contour can describe 
the contour features well.

Methods: In this paper, we propose a new method to translate 2D contour of breast 
mass in mammography into 1D signature. The method can describe not only the 
contour features but also the regularity of breast mass. Then we segment the whole 1D 
signature into different subsections. We extract four local features including a new con-
tour descriptor from the subsections. The new contour descriptor is root mean square 
(RMS) slope. It can describe the roughness of the contour. KNN, SVM and ANN classifier 
are used to classify benign breast mass and malignant mass.

Results: The proposed method is tested on a set with 323 contours including 143 
benign masses and 180 malignant ones from digital database of screening mammog-
raphy (DDSM). The best accuracy of classification is 99.66% using the feature of root 
mean square slope with SVM classifier.

Conclusion: The performance of the proposed method is better than traditional 
method. In addition, RMS slope is an effective feature comparable to most of the exist-
ing features.

Keyword: Breast mass, 1D signature contour subsection, RMS slope

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

Li et al. BioMed Eng OnLine  (2017) 16:44 
DOI 10.1186/s12938-017-0332-0 BioMedical Engineering

OnLine

*Correspondence:   
ylyin@sdu.edu.cn 
1 School of Computer 
Science and Technology, 
Shandong University, 
Jinan 250101, China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-017-0332-0&domain=pdf


Page 2 of 12Li et al. BioMed Eng OnLine  (2017) 16:44 

suggestions to decrease the false detection rate and false negative rate [6]. In screening 
mammography, if a doctor sees a clearly defined mass whose contour is microlobulated 
or spiculated, he need not ask patient to do pathological puncture. He is quite sure that 
the mass is malignant Fig. 1b. If the contour of a breast mass is regular and the shape is 
nearly round, then the mass is probably benign Fig. 1a. The computer assisted diagnose 
can distinguish the two classes breast mass. It can decrease the pain of patient to do 
pathological puncture.

Researchers proposed many methods to describe the shape and texture in the sys-
tem of CAD. Shape descriptor is compactness, eccentricity, moment, Fourier trans-
formation descriptor, statistical marginal characteristics [7–11]. Texture descriptions 
gray level co-occurrence matrix and fractal dimension and so on [5, 12–14]. Pohlman 
et al. [15] proposed a method to transform 2D contour of breast mass to 1D signature. 
The signature of a contour is obtained by a function of radial distance from the cen-
troid to the contour versus the angle of the radial line over the range (0°–360°). In this 
way, a signature of small fluctuation is obtained if the contour of breast mass is benign. 
Otherwise, if it is a malignant mass, a signature of large fluctuation is obtained. Fractal 
character can describe the fluctuation. So in literature [16] the breast mass is classified 
with the fractal analysis and the classification accuracy is greater than 80%. However, 
the function of radial versus degree could lead to a multi-value function in the case of 
an irregular or speculated margin [17]; the signature computed in this manner would 
also have ranges of undefined values in the case of a contour for which the centroid falls 
outside the region enclosed by the contour. Rangaraj et al. [16] improved the method. 
They transformed the 2D contour of breast mass to 1D signature by polygonal modeling 
of contours of breast masses using the turning angle function. Rangayyan and Nguyen 
[2] demonstrated the usefulness of fractal analysis for the classification of breast masses 
with the box-counting and ruler methods for the derivation of the FD of the two-dimen-
sional 2D contours of masses as well as their one-dimensional 1D signatures. Some lit-
eratures [2, 9, 18–20] revealed that the regular extent is also very important to make a 
distinction between benign and malign breast mass. If the shape of mass is circular or 
oval then its probability to be benign is larger than to be malign mass.

Fig. 1 The breast mass in mammogram. a Benign mass with smooth margin and regular shape; b malignant 
mass with microlobulated margin and irregular shape
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So we propose a new method in this paper to express the regularity of the contour for 
breast mass. At first, abnormal area in the mammography image is labelled by experi-
mental doctors. Second, we translate 2D contour to 1D signature using the Euclid dis-
tance from the edge of the breast mass to periphery of the circular or oval centered 
with centroid. This method describes not only the roughness of the contour but also the 
regular degree of the contour. Third, we segment the whole 1D signature into different 
subsections. Fourth, we extract several local contour features. At last, the feature vec-
tors re-organized according to the local feature value of each subsection are fed different 
classifiers. The flowchart of our proposed is shown as Fig. 2.

The remainder of this paper is organized as follows. The new method for translating 
2D contour to 1D signature is proposed in “Methods”. In “Features”, we extract fractal 
dimension FD, w, µR/σR (where µR means mean radial distance of tumor boundary, and 
σR means standard deviation), and root mean square slope features describing the con-
tour characteristic. Then in the next Section, experimental results and analysis are intro-
duced. The last is the summary of our work and the prospect of future work.

Methods
In this part, the database is firstly introduced. Second, the method of 2D contour to 1D 
signature is illustrated in some detail. Finally, we explain how to segment 1D signature 
into subsections and how to re-organize these subsections.

Database

In this paper, digital database for screening mammography (DDSM) has been utilized 
to provide the mammography images. This database is provided by the Massachu-
setts General Hospital, the University of South Florida, and Sandia National Laborato-
ries [21, 22]. This database includes about 2620 cases. Each case has 4 mammography 
images composed of two view images of each breast, along with some associated patient 

Fig. 2 Flowchart of our proposed method



Page 4 of 12Li et al. BioMed Eng OnLine  (2017) 16:44 

information. Images containing suspicious areas have associated pixel-level ground 
truth information about the locations and types of suspicious regions. This informa-
tion is saved as an overlay file. Each overlay file may specify multiple abnormalities. 
Each abnormality has information on the lesion type, the assessment, the subtlety, the 
pathology and at least one outline. Each boundary is specified as a chain code. The 
details about the DDSM database can be found in literature [23] or availability of data 
and materials at the end of this article. The database includes Normal, benign and cancer 
volumes. The research object in this article is the contour of benign and malignant mass. 
So we choose 323 contours of mammography images from DDSM database including 
143 contours of benign images and 180 contours of malign images. In order to simplicity 
and convenience of experiment, we choose some mammography images including single 
abnormality. The numbers of the images of we used are listed on the Additional file 1: 
Appendix S1. Among 143 benign images, most contours are similar ellipse. These benign 
mass is prone to classify wrongly using existing method. All images are from the differ-
ent patient.

2D contour to 1D signature
The benign mass has a smooth shape that results in a simple signature, whereas the 
malignant tumor has a jagged contour that leads to a rough signature. The contours of 
every abnormality are extracted by means of connecting the point expressed with chain 
code in the overlay files. Figure 3a and b show the contours of benign breast mass and 
malignant mass. The contour of a 2D contour can be formalized as an orderly point set 
along anticlockwise direction C = {pi = (xi, yi), i = 1, 2, 3, . . . ,N }. (xi, yi) is the coordi-
nate of point pi and N is the number of point on the contour restricted by pi+N = pi. 

The center pc(x0, y0) of 2D contour is expressed as (x0, y0) =
(

∑N
i=1 xi
N ,

∑N
i=1 yi
N

)

. The first 

point on the contour we choose is on the right of center point. It is the crossover point 
of the horizontal line passed through the center point and the contour of breast mass. 
Radius is the distance between the point pi on the contour and the center pc(x0, y0). The 
diameter of one axis x is Dx = maxi,j∈{1,...,N } |xi − xj|. The diameter of the other axis y 
is Dy = maxi,j∈{1,...,N } |yi − yj|. So the equation of the ellipse centered as pc(x0, y0) and 
diameter as Dx,Dy respectively is x−x0

Dx
+

y−y0
Dy

= 1. If Dx = Dy, the ellipse is transformed 
into a circle centered as pc(x0, y0) and diameter is Dx(Dy). This ellipse or circle is the 

a b
Fig. 3 Contours of breast mass. a Benign mass; b malignant mass
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standard of breast mass contour. If the points on the contour of breast mass are all near 
the ellipse, we can declare the contour is regular. The probability that the mass is benign 
is high. Otherwise, the mass is determined as malign. We define that hp(i) is the dis-
tance function between pc(x0, y0) and pi(xi, yi). hq(i) is the distance function between 
pc(x0, y0) and qi(xi, yi). The distance between pi(xi, yi) and qi(xi, yi) is defined as h(i). h is 
also the function of the number of pixel on contour. Figure 4a and b show 1D signature 
of benign and malign breast mass in Fig. 3a and b.

Subsection and integration

The method which 2D contour transforms into 1D signature can describe the feature 
of the whole contour. Sometimes the local feature is also very important to classify the 
benign and malignant breast mass. In Fig. 1b, for example, the 2/3 contour in the left 
is smooth and regular but subsection in the right is microlobulated. It is not precise if 
we extract the feature on whole contour. So we propose a method that a whole signa-
ture is divided into C ∈ {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20} subsections respectively. 
If C = 1, the signature is whole one. The feature is a value. Otherwise, the feature of each 
subsection is extracted respectively. Then segments are ranked by the value of each sub-
section feature. Finally these subsections are integrated into a whole signature in sequen-
tial order according to the value of feature. That is to say the feature of each contour of 
breast mass is a vector of C dimension. The number of subsections affects the accuracy 
of classification. Because the optimized amounts of subsections are relevant to the size 
of mass contour and features, we divide each contour into C subsections and choose the 
average accuracy of all kinds of subsections as the final performance of each feature. For 
example, if C = 4, each contour is segmented into 4 subsections. The feature is a vector 
of 4 dimensions. Then we feed 323 feature vectors into classifiers. After the whole set C 
is ergodic, we obtain 11 results. The average of 11 results is as the final performance.

Features
In this part, four features are introduced. Among them, RMS s is first proposed by us. It 
can describe the variation of 1D signature in vertical direction well.

Fig. 4 1D signatures of breast mass contours. a Benign mass; b malignant mass
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Root mean square roughness w

Root mean square roughness describes the irregular degree of 1D signature. The root 
mean square roughness is defined as: w is root mean square roughness defined as 
w =

√

�h2� − �h�2. Among the equation, 〈 〉 expresses the statistical average, w expresses 
the fluctuation degree of h in vertical direction. The shape is more regular with the value 
of more small. That is to say that the margin is more close to a circle or ellipse. The mass 
will more probably be benign than malign. So root mean square roughness may be used 
as a feature to classify the benign or malign breast mass.

The µR/σR ratio

The µR/σR ratio (where µR means mean radial distance of tumor boundary, and σR 
means standard deviation), describes the circularity of the breast mass contour. Malig-
nant mass should have smaller values of circularity than benign mass. Haralick [24] 
proved that the µR/σR ratio is a good feature in classifying malignant mass and benign 
mass. Polhman [15] applied this feature in his 1D signature and acquired the good result.

Fractal dimension

According to the fractal geometry of Mandelbort, the fractal dimension can describe the 
property of self-similarity in some way. Many fractal models are proposed to analyze 
fractal phenomenon of nature. The popular fractal model is differential box-counting 
method. Studies prove that the differential box-counting method is appropriate to self-
similarity fractal model. In medical image, the fractal Brownian motion (fBm) model 
has been shown to be suitable for the analysis of medical image because the intensity 
surface of a medical image can be viewed as the end result of random walk. The fBm 
model belongs to the class of statistically self-affine fractal concept and regards naturally 
occurring rough surfaces as the end result of random walks. Since the roughness of the 
intensity surface of a medical image can also be viewed as the end result of a random 
walk, the fBm model suits for the analysis of medical images. To the affine fractal ran-
dom rough model, autocorrelation function and height-height correlation function can 
be expressed as [23]:

where α is the fractal exponent, the relative between α and fractal dimension D is 
α = d − D, d is the space dimension, and α is constraint by 0 ≤ α ≤ 1. w is root mean 
square roughness expressing the fluctuation degree of h in vertical direction, and ξ is 
correlation length expressing the fluctuation degree of ρ in horizontal direction. The 
autocorrelation function R of h(i) is can be defined as:

Here, ρ = |i2 − i1| is the interval between two points on signature. The autocorrelation 
function R has some characteristics such as: (1) If the signal is the smooth and steady 
random process, R(i + ρ) is irrelevant to n and relevant to only o i.e. R(i + ρ) = R(ρ) . 
With the increment of correlation interval ρ, R(ρ) decreases little by little and tends to 

(1)R(ρ) = w2exp[(−ρ/ξ)2α]

(2)H(ρ) = �[h(n)− h(n′)]2� = 2w2{1− exp[(−ρ/ξ)2α]}

(3)R(i + ρ) = �h(i)h(i + ρ)�/w2
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be zero. The rate of decrease is decided by the distance between two points irrelevant to 
each other. The correlation length is defined by the value of correlation interval at the 
point that the autocorrelation function R(ρ) decreases to e−1 of the maximum. The cor-
relation length ξ expresses the speed that R(ρ) decreasing with ρ.If the interval between 
two points is less than ξ, the two points are correlated. Otherwise, the two points are 
independent. The fluctuation in the horizontal direction is expressed with ξ and the fluc-
tuation in the vertical direction is expressed with w.

In the condition of ρ << ξ, self-affine fractal surface h(n) satisfies self-affine transform 
below:

If the scale is small as 1/ε, the average variation of height difference is ε2α. This varia-
tion is corresponding to the power law variation of height-height correlation function 
during the short distance. The relationship is

The power law variation of height-height correlation function can describe statistically 
self-similarity characteristic and local fluctuation. If α is smaller, the local fluctuation is 
more violent and fractal dimension is larger. From the Eq. (5), we can conclude that in 
log–log coordinate system h(ρ) is proportional to ρ when ρ << 1. 2α can be estimated 
from the slope of the line approximated by linear least squares fitting on log(H(ρ)) ver-
sus log(ρ) when we choose a range of the lower scale ρ. Figure  5 shows the curve of 
log(H(ρ)) versus log(ρ) and the linear fitting for benign and malign mass. In this paper, 
we look the 1D signature of contour as height distribution of the affine fractal random 
surface. The fractal dimension indicates the self-similarity feature and it also expresses 
the local non-smooth fluctuation of the signature. The fractal dimension D is larger 
and larger; the local fluctuation of the signature is more and more drastic. Here we use 
the fractal exponent α of 1D signature of contour as the third feature to distinguish the 
benign mass from the malign one.

RMS slope s

Each point on the contour has different slope. The variation of slope describes the shape 
of contour. If the contour is smooth, the variation of slope is slow and regular; otherwise, 
variation of slope is drastic. When we transform 2D contour into 1D signature, the value 
in the Y-axis expresses the circularity. The absolute value of the slope shows the variation 
speed of contour. So we take the slope distribution of each point on the contour as one 
of the features to discriminate malign mass from benign mass. Slope is acquired by lin-
ear interval. Root mean square slope is defined as:

We can see from the Fig. 4 and Eq. (6) that the slope of benign mass has small value 
and the fluctuation is gentle. While the slope of malignant mass has big value and the 

(4)h(x0, y0) = ε2αh(εx0, εy0)

(5)h(ρ) ∝ ρ2α
, ρ << 1

(6)s =

√

√

√

√

〈

(

dh(ρ)

d(ρ)

)2
〉
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fluctuation is violent. The variation range of the RMS s for malignant mass is wider than 
benign mass.

Classification
K-Nearest-neighbor (KNN), support vector machine (SVM) and artificial neural net-
work (ANN) are used as classifiers in this paper to differ benign mass from malign mass 
of breast. We choose K = 1 in KNN classifier and use a linear support vector machine 
classifier. The NNet classier is configured with 10 nodes in the hidden layer. The inter-
nal weight is initialized with randomly chosen values. 323 contours are divided into 
two subsets 300 contours for training and 23 for testing. The software we use is Matlab 
R2015b on a Win10 Operating System.

Experimental results and analysis
In this part, the performance of the proposed method is reported. Then, performance of 
four features is compared. Third, the effect of subsections is analyzed. And finally, classi-
fier performance is shown.

Performance evaluation for 2D contour to 1D signature

Table  1 show the comparison of our proposed method and existing method. We can 
see that the accuracy used our method is higher than used existing method. The obvi-
ous promotion is the accuracy of alpha. It raises 14.90%, whereas the accuracy of RMS s 
barely changes. This is because the accuracy of RMS s itself is close to 100%. It is difficult 
to rise greatly. To similar ellipse cases of breast mass in selected database, our proposed 
method can not only describe the circularity of contour but also illustrate the degree 
of margin fluctuation. While traditional method used only the standard deviation of 

Fig. 5 Height–height correlation function curve and linear fitting for benign and malign mass contour in 
log–log coordinate
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median filtering and origin boundary to quantify the degree of margin fluctuation. From 
Fig. 6 we can see that whether accuracy or sensitivity and specificity are improved with 
our method. Especially, the specificity of w for SVM raises 10.90%.

Performance evaluation for four features with three classifiers

Figure 7 and Table 1 show the performance of four features with three different classi-
fiers. No matter which classifier is used, the result proves that our proposed feature is 
better than existing one. To the features w and s, SVM classifier is the almost the same as 
ANN and is better than KNN. To other features, SVM is the best among these three clas-
sifiers. SVM is robust for small sample data. The accuracy of fractal feature α is 99.33%. 
Its performance is better than w and µR/σR. This is because the 1D signature of contour 
for breast mass accords with the fractal characteristic. The highest accuracy is 99.96% 
using the feature of root mean square slope with SVM classifier. The reason is that RMS 
slope can describe the variation of vertical direction of 1D signature. It is very important 
to distinguish the benign mass and malignant one.

Performance evaluation for subsection

Figure 8 shows the performance of four features for subsection using h(i) proposed in 
this paper. Performance is improved due to considering the local features in our method. 
Experiment proves that subsection is efficient to improve the performance for four 

Table 1 The accuracy comparison of our work h(i) with traditional one hp(i)

Italic type indicate maximum value

Feature Method KNN (%) SVM (%) ANN (%)

w hp(i) 76.68 82.21 79.84

h(i) 81.82 88.14 88.54

µR/σR hp(i) 76.68 84.51 79.45

h(i) 81.82 90.57 88.54

α hp(i) 83.00 87.21 83.79

h(i) 86.17 91.92 89.33

s hp(i) 92.09 99.33 94.86

h(i) 92.47 99.66 99.60

Fig. 6 The bar chart of accuracy, sensitivity and specificity for our method compared with existing method 
used SVM classifier
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features. Due to the slope feature has high performance, the improvement is not obvi-
ous. It can be seen that the accuracy increases quickly with the increasing the number 
of the subsections at the start for the feature of fractal dimension. Later the performance 
is stable with the larger N. This is because when N is larger, the segment is shorter; the 
number of point on the contour is less. The accuracy is affected due to the less point on 
the subsection. In three classifiers, SVM acquire the best performance using the feature 
of RMS slope. The performance of subsection is stable using the ANN classifier for four 
features.

Conclusion and future work
It is very important for contour to distinguish the benign breast mass from malign one. 
In this paper, we propose three shape features of broken line for contour to classify the 
benign and malign breast mass. The accuracy rate attains 99.66% with the RMS slope 
feature. In addition, we compute fractal dimension by another method of height-height 
correlation function in log–log coordinate. The accuracy rate attains 99.33%. It is higher 
than µR/σR and w. For further researches, the selection of N and some texture features 
could be studied for improving the classification performances. We can choose more 
cases in order that our study has a wider application range. Also, more advanced clas-
sification methods such as deep neural network can be used to improve the classification 
accuracy.

Fig. 7 The bar chart of accuracy for four features used KNN, SVM and ANN classifier

Fig. 8 Curve of sections V.S. accuracy for four features
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